Supplementary Figure 2. A single-trial visual evoked potential from a full-field drifting grating. a, Spatial distribution of the visual evoked response, as determined by the root-mean-square (RMS) value of the zero-meaned signal within the 40 ms to 160 ms window after the stimulus. Data are anatomically orientated as shown in the inset of Figure 3b. b, Individual visual evoked responses shown for the 49 electrodes located in the bottom, lieft-hand corner of the electrode array, as highlighted by the dashed box above.
A15. The amount of your tax liability from excess advance Child Tax Credit payments is reduced by up to the full repayment protection amount. The full repayment protection amount equals $2,000, multiplied by the following:
Wm Recorder 14.12 Full 21
The full repayment protection amount is $2,000 per child used to calculate your advance payments but not claimed on your tax return. The amount of the repayment protection will be reduced or phased out based on your modified AGI.
A16. Yes. Repayment protection amounts are based on your modified adjusted gross income (AGI). If your main home was in the United States for more than half of 2021, this chart can help you determine if you qualify for full, some, or no repayment protection.
Approximately 1,000 full-length IAP sequences are present in the murine genome, hundreds of copies of which retain retrotransposon activity, rendering this class of elements one of the most active [48]. Phylogenetic analyses imply that murine IAPs are a derivative of an ancestral retrovirus that has reached the germline of a remote rodent ancestor subsequent to loss of the env gene; consistent with its atypical intracellular lifecycle. Importantly, only approximately 700 of the around 1,000 generic IAP copies are full-length, that is, contain intact LTRs, gag, pro and pol genes. Our DNA methylation, transcription and chromatin analyses highlight a considerable de-repression of IAP sequences in the absence of Lsh. However, in terms of the functional consequences of Lsh deletion, it is unclear whether IAP transcription results in the translation of functional IAP proteins. Immunoblotting experiments detected full-length IAP protein in both DNA hypomethylation mutant backgrounds (Figure 6e), which is consistent with the IAP transcriptional activation by RNA-seq and previously published findings [39].
Of the numerous modifications linked with epigenetic transcription regulation, DNA methylation appears to be the most functionally apparent, that is, its presence at promoters is associated with a repressed state and hypomethylation is associated with a more transcriptionally permissive state [18]. The most striking examples of the dynamic nature of global DNA methylation are thought to occur during embryonic development. Upon fertilisation, the mouse paternal genome undergoes DNA methylation erasure followed by re-establishment of this epimark later in development; in addition, primordial germ cells are extensively reprogrammed to produce viable mature germ cells [55, 56]. To re-establish global methylation in the early embryo, the de novo and maintenance methyltransferases must be targeted to the appropriate unmarked DNA loci. How this is achieved is not fully understood, but Uhrf1-dependent histone H3 ubiquitylation is required to target Dnmt1 to replication sites in vitro[57]. Another strong candidate for targeting de novo methylation is the putative chromatin remodeller Lsh, as its deletion leads to hypomethylation in surviving embryos and mice [10, 58, 59].
08.20.09 - On August 17, 2009, at 1:31 p.m. EST, the latest NASA/NOAA geostationary weather satellite, called GOES-14, returned its first full-disk thermal infrared (IR) image, showing radiation with a wavelength of 10.7 micrometers emanating from Earth.
08.05.09 - Fast-moving stars shed new light on how these distant galaxies, which are a fraction the size of our Milky Way, may have evolved into the full-grown galaxies seen around us today.
Mitigation pathways are typically designed to reach a predefined climate target alone. Minimization of mitigation expenditures, but not climate-related damages or sustainable development impacts, is often the basis for these pathways to the desired climate target (see Cross-Chapter Box 5 in this chapter for additional discussion). However, there are interactions between mitigation and multiple other sustainable development goals (see Sections 1.1 and 5.4) that provide both challenges and opportunities for climate action. Hence there are substantial efforts to evaluate the effects of the various mitigation pathways on sustainable development, focusing in particular on aspects for which integrated assessment models (IAMs) provide relevant information (e.g., land-use changes and biodiversity, food security, and air quality). More broadly, there are efforts to incorporate climate change mitigation as one of multiple objectives that, in general, reflect societal concerns more completely and could potentially provide benefits at lower costs than simultaneous single-objective policies (e.g., Clarke et al., 2014)1. For example, with carefully selected policies, universal energy access can be achieved while simultaneously reducing air pollution and mitigating climate change (McCollum et al., 2011; Riahi et al., 2012; IEA, 2017d)2. This chapter thus presents both the pathways and an initial discussion of their context within sustainable development objectives (Section 2.5), with the latter, along with equity and ethical issues, discussed in more detail in Chapter 5.
Section 2.3 assesses the overall characteristics of 1.5C pathways based on fully integrated pathways, while Sections 2.4 and 2.5 describe underlying sectoral transformations, including insights from sector-specific assessment models and pathways that are not derived from IAMs. Such models provide detail in their domain of application and make exogenous assumptions about cross-sectoral or global factors. They often focus on a specific sector, such as the energy (Bruckner et al., 2014; IEA, 2017a; Jacobson, 2017; OECD/IEA and IRENA, 2017)19, buildings (Lucon et al., 2014)20 or transport (Sims et al., 2014)21 sector, or a specific country or region (Giannakidis et al., 2018)22. Sector-specific pathways are assessed in relation to integrated pathways because they cannot be directly linked to 1.5C by themselves if they do not extend to 2100 or do not include all GHGs or aerosols from all sectors.
Figure 2.4 compares the range of underlying socio-economic developments as well as energy and food demand in available 1.5C-consistent pathways with the full set of published scenarios that were submitted to this assessment. While 1.5C-consistent pathways broadly cover the full range of population and economic growth developments (except for the high population development in SSP3-based scenarios), they tend to cluster on the lower end for energy and food demand. They still encompass, however, a wide range of developments from decreasing to increasing demand levels relative to today. For the purpose of this assessment, a set of four illustrative 1.5C-consistent pathway archetypes were selected to show the variety of underlying assumptions and characteristics (Figure 2.4). They comprise three 1.5C-consistent pathways based on the SSPs (Rogelj et al., 2018)153: a sustainability oriented scenario (S1 based on SSP1) developed with the AIM model (Fujimori, 2017)154, a fossil-fuel intensive and high energy demand scenario (S5, based on SSP5) developed with the REMIND-MAgPIE model (Kriegler et al., 2017)155, and a middle-of-the-road scenario (S2, based on SSP2) developed with the MESSAGE-GLOBIOM model (Fricko et al., 2017)156. In addition, we include a scenario with low energy demand (LED) (Grubler et al., 2018)157, which reflects recent literature with a stronger focus on demand-side measures (Bertram et al., 2018; Grubler et al., 2018; Liu et al., 2018; van Vuuren et al., 2018)158. Pathways LED, S1, S2, and S5 are referred to as P1, P2, P3, and P4 in the Summary for Policymakers.
Furthermore, a range of measures could radically reduce agricultural and land-use emissions and are not yet well-covered in IAM modelling. This includes plant-based proteins (Joshi and Kumar, 2015)172 and cultured meat (Post, 2012)173 with the potential to substitute for livestock products at much lower GHG footprints (Tuomisto and Teixeira de Mattos, 2011)174. Large-scale use of synthetic or algae-based proteins for animal feed could free pasture land for other uses (Madeira et al., 2017; Pikaar et al., 2018)175. Novel technologies such as methanogen inhibitors and vaccines (Wedlock et al., 2013; Hristov et al., 2015; Herrero et al., 2016; Subharat et al., 2016)176 as well as synthetic and biological nitrification inhibitors (Subbarao et al., 2013; Di and Cameron, 2016)177 could substantially reduce future non-CO2 emissions from agriculture if commercialized successfully. Enhancing carbon sequestration in soils (Paustian et al., 2016; Frank et al., 2017; Zomer et al., 2017)178 can provide the dual benefit of CDR and improved soil quality. A range of conservation, restoration and land management options can also increase terrestrial carbon uptake (Griscom et al., 2017)179. In addition, the literature discusses CDR measures to permanently sequester atmospheric carbon in rocks (mineralization and enhanced weathering, see Chapter 4, Section 4.3.7) as well as carbon capture and usage in long-lived products like plastics and carbon fibres (Mazzotti et al., 2005; Hartmann et al., 2013)180. Progress in the understanding of the technical viability, economics and sustainability of these ways to achieve and maintain carbon neutral energy and land use can affect the characteristics, costs and feasibility of 1.5C-consistent pathways significantly.
Be it for the energy, transport, buildings, industry, or AFOLU sector, the literature shows that multiple options and choices are available in each of these sectors to pursue stringent emissions reductions (Section 2.3.1.2, Supplementary Material 2.SM.1.2, Chapter 4, Section 4.3). Because the overall emissions total under a pathway is limited by a geophysical carbon budget (Section 2.2.2), choices in one sector affect the efforts that are required from others (Clarke et al., 2014)188. A robust feature of 1.5C-consistent pathways, as highlighted by the set of pathway archetypes in Figure 2.5, is a virtually full decarbonization of the power sector around mid-century, a feature shared with 2C-consistent pathways. The additional emissions reductions in 1.5C-consistent compared to 2C-consistent pathways come predominantly from the transport and industry sectors (Luderer et al., 2018)189. Emissions can be apportioned differently across sectors, for example, by focussing on reducing the overall amount of CO2 produced in the energy end-use sectors, and using limited contributions of CDR by the AFOLU sector (afforestation and reforestation, S1 and LED pathways in Figure 2.5) (Grubler et al., 2018; Holz et al., 2018b; van Vuuren et al., 2018)190, or by being more lenient about the amount of CO2 that continues to be produced in the above-mentioned end-use sectors (both by 2030 and mid-century) and strongly relying on technological CDR options like BECCS (S2 and S5 pathways in Figure 2.5) (Luderer et al., 2018; Rogelj et al., 2018)191. Major drivers of these differences are assumptions about energy and food demand and the stringency of near-term climate policy (see the difference between early action in the scenarios S1, LED and more moderate action until 2030 in the scenarios S2, S5). Furthermore, the carbon budget in each of these pathways depends also on the non-CO2 mitigation measures implemented in each of them, particularly for agricultural emissions (Sections 2.2.2, 2.3.3) (Gernaat et al., 2015)192. Those pathways differ not only in terms of their deployment of mitigation and CDR measures (Sections 2.3.4 and 2.4), but also in terms of the resulting temperature overshoot (Figure 2.1). Furthermore, they have very different implications for the achievement of sustainable development objectives, as further discussed in Section 2.5.3. 2ff7e9595c
Comments